Abstract

Membrane fluidized bed reactors have been proposed and demonstrated as an effective reactor concept for ultrapure hydrogen production with integrated carbon dioxide capture. Recent experimental studies have shown that the hydrogen permeation rate through the membranes and the mass transfer rate from the bubble phase to the emulsion phase are the two main limiting factors in this type of reactors. To this end, we propose the concept of a micro membrane fluidized bed reactor (MMFBR) as a possible method to remove those two limitations. The idea of the MMFBR is that a significantly larger membrane area per unit reactor volume can be accommodated, thereby removing the limitation of the hydrogen permeation rate through the membranes. Furthermore, we numerically show with discrete particle simulations that the onset of turbulent fluidization is advanced significantly in a MMFBR, which allows the bed to be operated at the turbulent fluidization regime at a relatively low gas velocity. This is quite beneficial, since it provides a gentler environment for the membranes, and indicates a significant attenuation or possible removal of mass transfer limitations due to the well-known excellent mass transfer characteristic of turbulent fluidization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.