Abstract

BackgroundBenign childhood epilepsy with centrotemporal spikes (BECTS), a common pediatric epilepsy, may lead to cognitive decline when compounded by Electrical Status Epilepticus during Sleep (ESES). Emerging evidence suggests that disruptions in the Salience Network (SN) contribute significantly to the cognitive deficits observed in BECTS-ESES. Our study rigorously investigates the dynamic functional connectivity (dFC) within the SN and its correlation with cognitive impairments in BECTS-ESES, employing advanced neuroimaging and neuropsychological assessments. MethodsIn this research, 45 patients diagnosed with BECTS-ESES and 55 age-matched healthy controls (HCs) participated. We utilized resting-state functional magnetic resonance imaging (fMRI) and Independent Component Analysis (ICA) to identify three fundamental SN nodes: the right Anterior Insula (rAI), left Anterior Insula (lAI), and the Anterior Cingulate Cortex (ACC). A two-sample t-test facilitated the comparison of dFC between these pivotal regions and other brain areas. ResultsSignificantly, the BECTS-ESES group demonstrated increased dFC, particularly between the ACC and the right Middle Occipital Gyrus, and from the rAI to the right Superior Parietal Gyrus and Cerebellum, and from the lAI to the left Postcentral Gyrus. Such dFC augmentations provide neural insights potentially explaining the neuropsychological deficits in BECTS-ESES children. Employing comprehensive neuropsychological evaluations, we mapped these dFC disruptions to specific cognitive impairments encompassing memory, executive functioning, language, and attention. Through multiple regression analysis and path analysis, a preliminary but compelling association was discovered linking dFC disturbances directly to cognitive impairments. These findings underscore the critical role of SN disruptions in BECTS-ESES cognitive dysfunctions. LimitationOur cross-sectional design and analytic methods preclude definitive mediation models and causal inferences, leaving the precise nature of dFC's mediating role and its direct impact by BECTS-ESES partially unresolved. Future longitudinal and confirmatory studies are needed to comprehensively delineate these associations. ConclusionOur study heralds dFC within the SN as a vital biomarker for cognitive impairment in pediatric epilepsy, advocating for targeted cognitive-specific interventions in managing BECTS-ESES. The preliminary nature of our findings invites further studies to substantiate these associations, offering profound implications for the prognosis and therapeutic strategies in BECTS-ESES, thereby underlining the importance of this research in the field of pediatric neurology and epilepsy management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.