Abstract

In the constantly evolving field of medical diagnostics, triboelectric nanogenerators (TENGs) stand out as a groundbreaking innovation for simultaneously harnessing mechanical energy from micromovements and sensing stimuli from both the human body and the ambient environment. This advancement diminishes the dependence of biosensors on external power sources and paves the way for the application of TENGs in self-powered medical devices, especially in the realm of point-of-care diagnostics. In this review, we delve into the functionality of TENGs in point-of-care diagnostics. First, from the basic principle of how TENGs effectively transform subtle physical movements into electrical energy, thereby promoting the development of self-powered biosensors and medical devices that are particularly advantageous for real-time biological monitoring. Then, the adaptable design of TENGs that facilitate customization to meet individual patient needs is introduced, with a focus on their biocompatibility and safety in medical applications. Our in-depth analysis also covers TENG-based biosensor designs moving toward exceptional sensitivity and specificity in biomarker detection, for accurate and efficient diagnoses. Challenges and future prospects such as the integration of TENGs into wearable and implantable devices are also discussed. We aim for this review to illuminate the burgeoning field of TENG-based intelligent devices for continuous, real-time health monitoring; and to inspire further innovation in this captivating area of research that is in line with patient-centered healthcare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.