Abstract

AbstractBMN Matrix theory admits vacua in the shape of large spherical membranes. Perturbing around such vacua, the setup provides for a controlled computational framework for testing information evolution in Matrix black holes. The theory realizes excitations in the supergravity multiplet as qubits. These qubits are coupled to matrix degrees of freedom that describe deformations of the spherical shape of the membrane. Arranging the ripples on the membrane into a heat bath, we use the qubit system as a probe and compute the associated Feynman-Vernon density matrix at one loop order. This allows us to trace the evolution of entanglement in the system and extract the characteristic scrambling timescale. We find that our numerical analysis is consistent with this time scaling logarithmically with the entropy of the qubit system, in tune with suggestions by Sekino and Susskind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.