Abstract

DNA serves as a model system in polymer physics due to its ability to be obtained as a uniform polymer with controllable topology and nonequilibrium behavior. Currently, a major obstacle in the widespread adoption of DNA is obtaining it on a scale and cost basis that accommodates bulk rheology and high-throughput screening. To address this, recent advancements in bioreactor-based plasmid DNA production is coupled with anion exchange chromatography producing a unified approach to generating gram-scale quantities of monodisperse DNA. With this method, 1.1 grams of DNA is obtained per batch to generate solutions with concentrations up to 116mg mL-1. This solution of uniform supercoiled and relaxed circular plasmid DNA, is roughly 69 times greater than the overlap concentration. The utility of this method is demonstrated by performing bulk rheology measurements at sample volumes up to 1 mL on DNA of different lengths, topologies, and concentrations. The measured elastic moduli are orders of magnitude larger than those previously reported for DNA and allowed for the construction of a time-concentration superposition curve that spans 12 decades of frequency. Ultimately, these results can provide important insights into the dynamics of ring polymers and the nature of highly condensed DNA dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.