Abstract

The electrochemical reduction of CO2 (CO2 RR) is a promising approach to maintain a carbon cycle balance and produce value-added chemicals. However, CO2 RR technology is far from mature, since the conventional CO2 RR electrocatalysts suffer from low activity (leading to currents <10 mA cm-2 in an H-cell), stability (<120 h), and selectivity. Hence, they cannot meet the requirements for commercial applications (>200 mA cm-2 , >8000 h, >90 % selectivity). Significant improvements are possible by taking inspiration from nature, considering biological organisms that efficiently catalyze the CO2 to various products. In this minireview, we present recent examples of enzyme-inspired and enzyme-mimicking CO2 RR electrocatalysts enabling the production of C1 products with high faradaic efficiency (FE). At present, these designs do not typically follow a methodical approach, but rather focus on isolated features of biological systems. To achieve disruptive change, we advocate a systematic design methodology that leverages fundamental mechanisms associated with desired properties in nature and adapts them to the context of engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call