Abstract

The present study investigates different design strategies to produce non-wettable micropatterned surfaces. In addition to the classical method of measuring the contact angle, the non-wettability is also discussed by means of the immersion test. Inspired by non-wettable structures found in nature, the effects of features such as reentrant cavities, micropillars, and overhanging layers are studied. We show that a densely populated array of small diameter cavities exhibits superior non-wettability, with 65% of the cavities remaining intact after 24 h of full immersion in water. In addition, it is suggested that the wetting transition time is influenced by the length of the overhanging layer as well as by the number of columns within the cavity. Our findings indicate a non-wetting performance that is three times longer than previously reported in the literature for a small, densely populated design with cavities as small as 10 μm in diameter. Such properties are particularly beneficial for neural implants as they may reduce the interface between the body fluid and the solid state, thereby minimiing the inflammatory response following implantation injury. In order to assess the effectiveness of this approach in reducing the immune response induced by neural implants, further in vitro and in vivo studies will be essential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.