Abstract

We evaluated the use of attenuated total reflectance infrared spectroscopy for simultaneous in situ quantification of the nutritional composition of liquid food stuffs in the industrial kitchen context. Different methodologies were compared, including dry and wet acquisition along with instrument parameters and measurement times of 4 and 60 s. The most effective technique was 1-minute measurement, with prediction errors of 2.6, 0.7, 1.0, 2.2, 0.8, 2.4 g/100 mL and 150 Kcal, for carbohydrates, proteins, fat, sugars, saturated fat, water and energy values, respectively.The 4-second method resulted in larger errors but was more applicable for inline measurements. Dry measurements successfully predicted the fractions of proteins, fat, carbohydrates, and sugars, relative to total solids. An app was created to facilitate implementation in a kitchen environment. Compared with other techniques recommended by the FAO, the approach offered a simple alternative for simultaneous prediction of nutritional parameters in an industrial kitchen set-up.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.