Abstract

The design of a composite material structure is often challenging as it is driven by the trade-off between lightweight performance and production costs. In this paper, the boundaries of this design trade-off and its implications on material selection, geometrical design and manufacturability are analysed for a number of design strategies and composite material systems. The analysis is founded on a methodology that couples weight-optimization and technical cost modelling through an application-bound design cost. Each design strategy is evaluated for three levels of bending and torsional stiffness. The resulting stiffness-versus cost-range together constructs the design envelope and provides guidelines on the suitability and improvement potential of each case. Design strategies researched include monolithic, u-beam-, sandwich-insert- and sandwich-stiffened plates. Considered material systems include carbon-, glass, recycled carbon-, lignin- and hemp-fibre reinforced composites. Optimized sandwich designs are shown to have lowest design cost. Glass-, recycled carbon-, lignin- and hemp-fibre reinforced composite materials are all shown to reduce costs but at lower stiffness performance. Ultimately, the case study demonstrates the importance of early structural design trade-off studies and material selection and justifies introducing novel fibre systems in low-cost applications of moderate stiffness levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.