Abstract

In this paper, we present our system design, operational procedure, testing process, field results, and lessons learned for the valve-turning task of the DARPA Robotics Challenge (DRC). We present a software framework for cooperative traded control that enables a team of operators to control a remote humanoid robot over an unreliable communication link. Our system, composed of software modules running on-board the robot and on a remote workstation, allows the operators to specify the manipulation task in a straightforward manner. In addition, we have defined an operational procedure for the operators to manage the teleoperation task, designed to improve situation awareness and expedite task completion. Our testing process, consisting of hands-on intensive testing, remote testing, and remote practice runs , demonstrates that our framework is able to perform reliably and is resilient to unreliable network conditions. We analyze our approach, field tests, and experience at the DRC Trials and discuss lessons learned which may be useful for others when designing similar systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call