Abstract
This chapter applies data mining and learning analytics, along with self-regulated learning (SRL) theories, to examine possible interventions aimed at supporting students' success with online learning. The chapter introduces two learning support systems and the results of related research. These two systems are used as sample cases to describe the relationships among SRL, learning support, learning processes, and learning effects. Case 1 is an early warning system that uses an SRL questionnaire completed before actual learning to determine which students are likely to drop out. Case 2 focuses on student planning and the implementation phases of the SRL cycle. This system supports students' own planning and learning, creating distributed learning and reducing procrastination without human intervention. A comparison of the two cases implies that a combination of an early warning system and system constraints that require planning before actual learning can reduce the need for human learning support and decrease academic procrastination, resulting in increased distributed learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.