Abstract

We study the self-propulsion of spherical droplets as simplified hydrodynamic models of swimming micro-organisms or artificial micro-swimmers. In contrast to approaches that start from active velocity fields produced by the system, we consider active interface tractions, body force densities and active stresses as the origin of autonomous swimming. For negligible Reynolds number and given activity, we compute the external and internal flow fields as well as the centre of mass velocity and angular velocity of the droplet at fixed time. To construct trajectories from single time snapshots, the evolution of active forces or stresses must be determined in the laboratory frame. Here, we consider the case of active matter, which is carried by a continuously distributed rigid but sparse (cyto)-skeleton that is immersed in the droplet interior. We calculate examples of trajectories of a droplet and its skeleton from force densities or stresses, which may be explicitly time-dependent in a frame fixed within the skeleton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.