Abstract

We develop a deep learning-based algorithm, called DeepForce, to link ab initio physics with the continuum theory to predict concentration profiles of confined water. We show that the deep-learned forces can be used to predict the structural properties of water confined in a nanochannel with quantum scale accuracy by solving the continuum theory given by Nernst–Planck equation. The DeepForce model has an excellent predictive performance with a relative error less than 7.6% not only for confined water in small channel systems (L < 6 nm) but also for confined water in large channel systems (L = 20 nm) which are computationally inaccessible through the high accuracy ab initio molecular dynamics simulations. Finally, we note that classical Molecular dynamics simulations can be inaccurate in capturing the interfacial physics of water in confinement (L < 4.0 nm) when quantum scale physics are neglected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.