Abstract
AbstractBoth reservoirs and run of river power plants affect the thermal regime of rivers but despite the higher number of the latter few studies have focused on their effect. In this study, we investigated the water thermal regime of Serio River (Northern Italy), a subalpine river regulated by a reservoir and characterized by a cascade system of run of river power plants. Water temperature has been monitored continuously for more than 4 years at the extremes of 4 stretches subjected to water diversion and thermal alterations have been quantified. Our results show that hydroelectric power plants act locally causing a considerable thermal alteration that increases with the distance from the diversion weir. Indeed, within the by‐passed stretch, the rate of warming doubles the natural gradient (0.47°C/km vs. 0.19°C/km annually) with peaks in summer (0.73–0.90°C/km on average). By contrast, the run of river power plants keep the water temperature almost constant in the diversion channels. Thus, a cascade system of run of river plants shifts the overall riverine thermal regime from a continuous to a “stepped” longitudinal profile. Results highlight that the thermal effects of run of rivers plants are not negligible and should be considered and monitored continuously. Since there are thousands of hydropower plants powered by flowing waters it is time to consider their thermal impacts in environmental flow policies and bioassessment programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.