Abstract
Context. X-shaped radio galaxies (XRGs) are characterised by two pairs of misaligned lobes: active lobes hosting radio jets and the wings. None of the formation mechanisms proposed thus far are able to exhaustively reproduce the diverse features observed among XRGs. Emerging evidence has proposed the existence of sub-populations of XRGs forming via different processes. Aims. The brightest cluster galaxy (BCG) in Abell 3670 (A3670) is a dumbbell system hosting the XRG MRC 2011-298. The morphological and spectral properties of this interesting XRG were first characterised based on Karl G. Jansky Very Large Array (JVLA) data at 1–10 GHz. In the present work, we follow up on MRC 2011-298 with the upgraded Giant Metrewave Radio Telescope (uGMRT) at 120–800 MHz to further constrain its properties and origin. Methods. We carried out a detailed spectral analysis sampling different spatial scales. Integrated radio spectra, spectral index maps, radio colour-colour diagrams, and radiative age maps of both the active lobes and prominent wings were employed to test the origin of the source. Results. We confirm a progressive spectral steepening from the lobes to the wings. The maximum radiative age of the source is ~80 Myr, with the wings being older than the lobes by ≳30 Myr in their outermost regions. Conclusions. The observed properties are in line with an abrupt reorientation of the jets by ~90 deg from the direction of the wings to their present position. This formation mechanism is further supported by the comparison with numerical simulations in the literature, which additionally highlight the role of hydrodynamic processes in the evolution of large wings such as those of MRC 2011-298. It is plausible that the coalescence of supermassive black holes could have triggered the spin-flip of the jets. Moreover, we show that the S-shape of the radio jets is likely driven by precession with a period of P ~ 10 Myr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.