Abstract

The Frobenius–Perron dimension for an abelian category was recently introduced in [5]. We apply this theory to the category of representations of the finite-dimensional radical square zero algebras associated to certain modified ADE graphs. In particular, we take an ADE quiver with arrows in a certain orientation and an arbitrary number of loops at each vertex. We show that the Frobenius–Perron dimension of this category is equal to the maximum number of loops at a vertex. Along the way, we introduce a result which can be applied in general to calculate the Frobenius–Perron dimension of a radical square zero bound quiver algebra. We use this result to introduce a family of abelian categories which produce arbitrarily large irrational Frobenius–Perron dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.