Abstract
For Fermat curves F: aX n + bY n = Z n defined over F q , we establish necessary and sufficient conditions for F to be F q -Frobenius nonclassical with respect to the linear system of plane cubics. In the new F q -Frobenius nonclassical cases, we determine explicit formulas for the number N q (F) of F q -rational points on F. For the remaining Fermat curves, nice upper bounds for N q (F) are immediately given by the Stohr–Voloch Theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.