Abstract
Abstract Given a $g$-dimensional abelian variety $A$ over a finite field $\mathbf{F}_{q}$, the Weil conjectures imply that the normalized Frobenius eigenvalues generate a multiplicative group of rank at most $g$. The Pontryagin dual of this group is a compact abelian Lie group that controls the distribution of high powers of the Frobenius endomorphism. This group, which we call the Serre–Frobenius group, encodes the possible multiplicative relations between the Frobenius eigenvalues. In this article, we classify all possible Serre–Frobenius groups that occur for $g \le 3$. We also give a partial classification for simple ordinary abelian varieties of prime dimension $g\geq 3$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.