Abstract
Abstract The paper deals with a class of periods, Frobenius constants, which describe monodromy of Frobenius solutions of differential equations arising in algebraic geometry. We represent Frobenius constants related to families of elliptic curves as iterated integrals of modular forms. Using the theory of periods of modular forms, we then witness some of these constants in terms of zeta values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.