Abstract

We generalize the $f(R)$ type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar $R$ and of the matter Lagrangian $L_m$. We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the energy-momentum tensor. The equations of motion for test particles can also be derived from a variational principle in the particular case in which the Lagrangian density of the matter is an arbitrary function of the energy-density of the matter only. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equation of motion is also considered, and a procedure for obtaining the energy-momentum tensor of the matter is presented. The gravitational field equations and the equations of motion for a particular model in which the action of the gravitational field has an exponential dependence on the standard general relativistic Hilbert--Einstein Lagrange density are also derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call