Abstract

A difficult question arising in the study of effect algebras is how to equip them with a fitting and proper topology such that the topology is compatible with the partial operations ⊕ and Θ. As we know, the Frink ideal topology is an important intrinsic topology for studying partially ordered set theory; in particular, it is the correct topology for chains and direct products of a finite number of chains. In this paper, we show that the Frink ideal topology is also a nice topology for studying effect-algebra theory since it provides the operations with some of the expected continuity properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.