Abstract

This paper models the fringing field effects in a capacitive micromachined ultrasonic transducer (CMUT) structure for determining the sensitivity of the device. CMUT is used as a medical imaging component which can be an important module for sustainable healthcare system. The capacitance value of the device is evaluated based on Younes Ataiiyan’s method. To determine the equivalent capacitance of the device, the capacitances of the membrane, gap and silicon nitride insulating layer are associated in series. Mason’s modeling techniques are used to evaluate the membrane displacement. Circular membrane approximation model has been considered. Effects of the variation in membrane thickness, gap separation, and membrane radius on membrane displacement are investigated. The analytical prediction has been validated with the finite element method simulation results through PZFlex. Three dimensional modeling is carried out to accurately capture the characteristic behavior of the device. The agreements of both results are excellent which verifies that fringing field effects exist in the device operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call