Abstract

We describe the development of a scanning flow cytometer capable of measuring the distribution of fluorescent dye along objects with a spatial resolution of 0.7 micron. The heart of this instrument, called a fringe-scan flow cytometer, is an interference field (i.e., a series of intense planes of illumination) produced by the intersection of two laser beams. Fluorescence profiles (i.e., records showing the intensity of fluorescence measured at 20 ns intervals) are recorded during the passage of objects through the fringe field. The shape of the fringe field is determined by recording light scatter profiles as 0.25 micron diameter microspheres traverse the field. The distribution of the fluorescent dye along each object passing through the fringe field is estimated from the recorded fluorescence profile using Fourier deconvolution. We show that the distribution of fluorescent dye along microsphere doublets and along propidium iodide stained human chromosomes can be determined accurately using fringe-scan flow cytometry. The accuracy of fringe-scan shape analysis was determined by comparing fluorescence profiles estimated from fringe-scan profiles for microspheres and chromosomes with fluorescence profiles for the same objects measured using slit-scan flow cytometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.