Abstract

The intensity of some pixels of the captured fringe will be saturated when fringe projection profilometry is used to measure objects with high reflectivity, which will significantly affect the reconstruction of the measured object. In this paper, we propose a fringe pattern inpainting method based on the convolutional neural network (CNN) denoiser prior guided by additional information from a fringe captured in short exposure time. First, a binary mask obtained by Otsu algorithm from the modulation information of the short exposure fringe is used to detect the high-saturation region in the normal exposure fringe. Then, the corrected gray-scales of the region of the short exposure fringe selected by the mask are inserted in the saturated region of the normal fringe to form an initial fringe for iteration. At last, fringe pattern inpainting is achieved by using a CNN denoiser prior. The correct phase can be reconstructed from the inpainted fringes. The computer simulation and experiments verify the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.