Abstract

Conditions of the digital recording of the fringe pattern determine the phase reconstruction procedure, which in turn directly shapes the final accuracy and throughput of the full-field (non-scanning) optical measurement technique and defines the system capabilities. In this way, the fringe pattern analysis plays a crucial role in the ubiquitous optical measurements and thus is under constant development focused on high temporal/spatial resolution. It is especially valuable in the quantitative phase imaging technology, which emerged in the high-contrast label-free biomedical microscopy. In this paper, I apply recently blossomed two-frame phase-shifting techniques to the QPI and merge them with advanced adaptive interferogram pre-filtering algorithms. Next, I comprehensively test such frameworks against classical and adaptive single-shot methods applied for phase reconstruction in dynamic QPI enabling highest phase time-space-bandwidth product. The presented study systematically tackles important question: what is the gain, if any, in QPI realized by recording two phase-shifted interferograms? Counterintuitively, the results show that single-shot demodulation exhibited higher phase reconstruction accuracy than two-frame phase-shifting methods in low and medium interferogram signal-to-noise ratio regimes. Thus, the single-shot approach is promoted due to not only high temporal resolution but also larger phase-information throughput. Additionally, in the majority of scenarios, the best option is to shift the paradigm and employ two-frame pre-filtering rather than two-frame phase retrieval. Experimental fringe analysis in QPI of LSEC/RWPE cell lines successfully corroborated all novel numerical findings. Hence, the presented numerical-experimental research advances the important field of fringe analysis solutions for optical full-field measurement methods with widespread bio-engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call