Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that governs a highly conserved pathway central to the protection of cells against various oxidative stresses. However, the biological impact of xenobiotic intervention of Nrf2 in physiological and pathophysiological conditions remains debatable. Activation of Nrf2 in cancer cells has been shown to elevate drug resistance and increase cell survival and proliferation, while inhibition of Nrf2 sensitizes cancer cells to drug treatment. On the other hand, activation of Nrf2 in normal healthy cells has been explored as a rather successful strategy for cancer chemoprevention. Selective activation of Nrf2 in off-target cells has recently been investigated as an approach for protecting off-target tissues from untoward drug toxicity. Specifically, induction of antioxidant response element genes via Nrf2 activation in cardiac cells is being explored as a means to limit the well-documented cardiotoxicity accompanied by cancer treatment with commonly prescribed anthracycline drugs. In addition to cancers, Nrf2 has been implicated in many other diseases including Alzheimer's and Parkinson's Diseases, diabetes, and cardiovascular disease. In this review, we discuss the roles of Nrf2 and its downstream target genes in the treatment of various diseases, and its recently explored potential for increasing the benefit: risk ratio of commonly utilized cancer treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call