Abstract

Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.