Abstract

One of the best-known models in network science is preferential attachment. In this model, the probability of attaching to a node depends on the degree of all nodes in the population, and thus depends on global information. In many biological, physical and social systems, however, interactions between individuals depend only on local information. Here, we investigate a truly local model of network formation—based on the idea of a friend of a friend—with the following rule: individuals choose one node at random and link to it with probability p, then they choose a neighbour of that node and link with probability q. Our model produces power-laws with empirical exponents ranging from 1.5 upwards and clustering coefficients ranging from 0 up to 0.5 (consistent with many real networks). For small p and q = 1, the model produces super-hub networks, and we prove that for p = 0 and q = 1, the proportion of non-hubs tends to 1 as the network grows. We show that power-law degree distributions, small world clustering and super-hub networks are all outcomes of this, more general, yet conceptually simple model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.