Abstract

If $\Omega$ is any compact Lipschitz domain, possibly in a Riemannian manifold, with boundary $\Gamma = \partial \Omega$, the Dirichlet-to-Neumann operator $\mathcal{D}_\lambda$ is defined on $L^2(\Gamma)$ for any real $\lambda$. We prove a close relationship between the eigenvalues of $\mathcal{D}_\lambda$ and those of the Robin Laplacian $\Delta_\mu$, i.e. the Laplacian with Robin boundary conditions $\partial_\nu u =\mu u$. This is used to give another proof of the Friedlander inequalities between Neumann and Dirichlet eigenvalues, $\lambda^N_{k+1} \leq \lambda^D_k$, $k \in N$, and to sharpen the inequality to be strict, whenever $\Omega$ is a Lipschitz domain in $R^d$. We give new counterexamples to these inequalities in the general Riemannian setting. Finally, we prove that the semigroup generated by $-\mathcal{D}_\lambda$, for $\lambda$ sufficiently small or negative, is irreducible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.