Abstract

A quartz crystal microbalance (QCM) with a graphene/Ni(111) electrode has been used to probe frictional heating effects in Kr monolayers sliding on the microbalance electrode in response to its oscillatory motion. The temperatures of the sliding Kr monolayers are observed to rise approximately 13 K higher than their static counterparts, but show surprisingly little dependence on oscillation amplitude. Although counterintuitive, the observation can be explained by noting that the Kr surface residence times are limited, which effectively caps how much the temperature can rise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call