Abstract
Frictional strength of fault zones is a key parameter for evaluation of fault stability and reactivation. We measure friction using the direct shear test (DST) for (i) sand-clay mixes mimicking fault gouges, and (ii) strength of fault zone interfaces. The sand-clay mixing ratio is linked to the established Shale Gouge Ratio (SGR) used in fault seal analysis, suggesting an approach for linking the measured frictional properties to the established subsurface fault characterization methods and risk assessment. We use powdered caprock material from the Draupne Formation mixed with sand to prepare the fault gouge and discuss application of results for fault zones on the Horda Platform, Norwegian North Sea.Shearing of fault gouge show a systematic decrease in residual friction coefficient with increasing clay content from 0.6 (φ = 31°) in pure sand (SGR 0%) to 0.4 (φ = 22°) for clay rich mixtures (SGR 100%). Interface testing mimicking fault gouge on sand surface is less systematic and shows residual friction coefficients ranging from 0.53 to 0.6 (φ = 28–31°) for SGR 0–50%. Detailed interpretation of the shear testing results shows changes in drainage properties, volumetric changes during shearing and shear responses to normal stresses indicating threshold values for sand versus clay dominated material behaviour. However, the results are non-conclusive on the question if a linear variation of friction with clay content or a threshold between sand dominated versus clay dominated friction provides the best approach for linking friction to fault clay content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.