Abstract

Serpentinites are “weak” rocks that play a critical role in the nucleation and propagation of slow slip events, tremors and earthquakes due to their unique rheological properties that promote strain localization and are common in a variety of tectonic settings, from mid-ocean ridges, to transform faults and subduction zones. In this study we analyze the microstructures of natural and experimental faults made by low-grade serpentinites (chrysotile and lizardite ± magnetite) to infer the possible deformation mechanisms operating in nature at hydrothermal conditions. The natural serpentinites pertain to the exhumed Monte Fico shear zone (Elba Island, Italy) that reached greenschist facies conditions during subduction related to the Apennine orogeny. The shear zone is made of dm-m scale lenses of massive and less deformed serpentines surrounded by foliated serpentinites and cut by brittle faults. Bulk deformation in the natural shear zones was accommodated by anastomosing and pervasive S/C foliation structures. Fault surfaces are covered with slickenfibers mostly composed of chrysotile and polygonal serpentine. The interpretation of the microstructural analysis indicates the coexistence of ductile pressure-solution within the massive lens with fracturing, veining and frictional slip along the faults bounding the lenses. This fault zone rock assemblage and microstructural association suggests that cycles of high fluid pressures are limited by dilatant slip along the faults. To determine the frictional properties and deformation mechanisms of these serpentinite-bearing faults we performed experiments with a rotary shear apparatus equipped with an hydrothermal vessel (ROSA-HYDROS, Padua University, Italy). We conducted slide-hold-slide (SHS) experiments at an effective normal stress of 20 MPa, a fluid pressure of 6 MPa, constant sliding velocity of 10 µm/s and at four different temperatures (room, 100°C, 200°C and 400°C). Friction experiments allowed to determine the rheological difference between the massive lens and the bounding faults, which represents favorable sites for slip nucleation.  The frictional healing properties document how the strength of these heterogeneous brittle-ductile shear zones evolve during the interseismic period. The combination of natural and experimental observation in our project aims at the understanding of the mechanical behaviour of such lithologically and geometrically complex fault zones and to elucidate slip processes during earthquakes and slow slip events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.