Abstract

AbstractThis paper is concerned with developing a numerical tool for detecting instabilities in elasto‐plastic solids (with an emphasis on soils) and inserting a discontinuity at these instabilities allowing the boundary value problem to proceed beyond these instabilities. This consists of implementing an algorithm for detection of strong discontinuities within a finite element (FE) framework. These discontinuities are then inserted into the FE problem through the use of a displacement field enrichment technique called the extended finite element method (XFEM). The newly formed discontinuities are governed by a Mohr–Coulomb frictional law that is enforced by a penalty method. This implementation within an FE framework is then tested on a compressive soil block and a soil slope where the discontinuity is inserted and grown according to the localization detection. Copyright © 2010 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.