Abstract

It is of interest to understand damage and failure mechanisms of microcracks and their evolution as a function of loading history, especially in the case of complex loading. Owing to their superior mechanical and physical properties, carbon nanotubes (CNTs) seem to hold a great promise as an ideal reinforcing material for composites of high-strength and low-density. HOWEVER, In most of the experimental results, only modest improvements in the strength and stiffness have been achieved by incorporating carbon nanotubes in polymers. There are many factors that influence the overall mechanical property of CNT-reinforced composites, e.g. the weak bonding between CNTs and matrix, the waviness and agglomeration of CNTs. In the present paper, we use the Mori-Tanaka method to evaluate the effect of these factors on the moduli of CNTs-CNT-reinforced composites. It is established that the waviness and agglomeration may significantly reduce the stiffening effect of CNTs, while the interface between the matrix and CNTs influence the moduli of CNTs-reinforced composites little.In this paper, the frictional sliding of microcracks under complex triaxial loading is analyzed, and the obtained results are incorporated into the constitutive relation of microcrack-weakened brittle materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.