Abstract

ABSTRACTObjectivesTo investigate the static frictional resistance at the bracket/archwire interface in two recently introduced bracket systems and compare them to conventional ceramic and conventional metal bracket systems. Three variables were considered including the bracket system, archwire type and archwire angulation.Material and MethodsFour bracket systems were tested in vitro: Self ligating ceramic, ceramic with metal slot and module, conventional ceramic with module and conventional metal with module. A specially constructed jig and an Instron testing machine were used to measure the static frictional resistance for 0.014 inches round and 0.018 x 0.025 inches rectangular stainless steel wires at 0° and 7° angulations. Main outcome measures: static frictional force at the bracket/archwire interface; recorded and measured in units of force (Newtons).ResultsSelf ligating ceramic and metal slot ceramic bracket systems generated significantly less static frictional resistance than conventional ceramic bracket systems with the wire at both angulations (P < 0.05). Changing the wire from 0.014 round to 0.018 x 0.025 rectangular wire significantly increased frictional forces for metal slot ceramic and conventional metal bracket systems (P < 0.01). Increasing wire angulation significantly increased frictional resistance at the bracket/archwire interface for all four types of bracket systems tested (P < 0.001).ConclusionsCompared to conventional ceramic, self ligating ceramic and metal slot ceramic bracket systems should give improved clinical performance, matching that of conventional metal brackets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call