Abstract

The friction characteristics of water in a sub-millimeter scale channel were investigated experimentally. The friction factors and the critical Reynolds number were measured using water flow through circular tubes with diameters of 0.5, 0.25 and 0.17 mm. The experimental results show that the measured friction factor for water agreed well with the conventional Poiseuille (λ = 64/Re) and Blasius (λ = 0.316 Re−0.25) equations in laminar and turbulent flow regime; the laminar-turbulent transition Reynolds number was approximately 2300 for diameter 0.5 mm. For diameter 0.25 mm, the friction factor evaluated by the form pressure drop also agreed well with the Poiseuille equation. For diameter 0.17 mm, the measured total friction factor was close to the Poiseuille prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.