Abstract

Multiple impacts of 2D (planar) open-loop robotic systems composed of [Formula: see text] elastic links and revolute joints are studied in this paper. The dynamic equations of motion for such systems are derived by the Gibbs-Appell recursive algorithm, while the regularized method is employed to model the impact-contact mechanism. The Timoshenko beam theory is used to model the transverse vibrations of the links. Also, both the structural damping and air damping are considered to enhance the modeling accuracy. The system joints are assumed to be frictionless and slack-free, but friction force is included for the links colliding with the ground. The [Formula: see text]-flexible-link system considered goes through a flight phase and an impact phase during its motion. In the impact phase, new equations of motion are derived by including the terms caused by the viscoelastic forces in the system’s differential equations. Owing to the extremely short acting time of the impact force, the related differential equations can be solved only via special treatment, i.e. by detecting the exact moment of impact. To this end, entering or leaving the impact phase is analyzed and controlled with high precision by a special computational algorithm presented in this work. To demonstrate the efficacy and precision of the algorithm developed, computer simulations are conducted to study the dynamic behavior of a 3-link robotic mechanism. To investigate the effect of mode shape on the elastic deformation of links, four different mode shapes are used in the simulations and their results are compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call