Abstract
In recent studies, many mathematical models have been introduced to describe the shear deformation characteristics of a magnetorheological elastomer (MRE). Owing to its beneficial elastomeric characteristics, an MRE can be adopted in novel controllable devices such as friction dampers and brakes. In this study, mathematical models are introduced to identify the frictional behavior of an MRE under different magnetic field conditions. Specifically, the improved LuGre (I-LuGre) model and the strain-stiffening model are compared using a system identification method. To identify the model that best describes the stick/slip behavior of an MRE, a harmonic frictional force was exerted on its surface with magnetic fields of varying strength. The I-LuGre model showed a precise correlation with the experimental results, and the strain-stiffening model was shown to have a simple structure for describing the frictional phenomenon. The system output error of the I-LuGre model remained within smaller errors than that of the strain-stiffening model. The parameter variations of each model that can be utilized to construct a control strategy are provided herein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.