Abstract
This paper presents the comparative investigation of temperature distributions in the pin-on-disc tribo-contact with dry friction conditions. Heat generation and distribution mechanism in contact of a pin made by phenolic resin–based brake friction composite and 35HNL steel disc counter-face material were studied. Both experimental and simulation methods were used to study the temperature changes. In order to analyse the thermal effects, the change in the coefficient of friction with time were also characterized. Experimental friction tests performed on universal “pin-on-disc"-type friction and wear test machine model MMW-1. Interface temperature measurements of the disc was conducted non-contact type infra-red laser thermometer. Heat simulations were modelled via finite element method using COMSOL Multiphysics 5.5, Heat Transfer in Solid Module. The simulations helped to determine in the increase of temperature over selected time period. Obtained experimental results compared with results of numerical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.