Abstract

Electron optical microscopy was employed to study the friction and wear of commercial polycrystalline varieties of SiC and Si 3N 4 in air at ambient temperature. Friction and wear tests were conducted in a reciprocating configuration with conical riders (both diamond and ceramic) sliding on a flat ceramic substrate. Worn surfaces were examined by both scanning electron microscopy and transmission electron microscopy. In general, friction and wear in the diamond-ceramic couples were severe. Friction with ceramic-ceramic couples was low, with friction coefficients between 0.1 and 0.4, wear being absent in single-pass tests. With ceramic-ceramic couple multipass systems, wear of Si 3N 4 occurs by plastic deformation which increases in severity with sliding distance accompanied by a corresponding increase in friction coefficient. With SiC, wear occurs by a mixture of intergranular fracture due to grain boundary weakness and plastic deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.