Abstract

A micro-patterned silicon surface, consisting of depressions with walls having a tilt angle of 30°, was created by photolithography followed by etching. The friction forces in single asperity contact acting between such a surface and an AFM tip was measured in air. This allowed elucidation of the validity of some common friction rules for this particular situation where a small tip traces a surface having roughness features that are significantly larger than the tip itself. The rules that was compared with our data were Amontons’ first rule of friction stating that the friction force should be proportional to the load; Amontons’ third rule stating that the friction force should be independent of sliding speed, and Euler’s rule providing a relation between slope angle and friction coefficient. We found that both nanoscale surface heterogeneities and the μm-sized depressions affect friction forces, and considerable reproducible variations were found along a particular scan line. Nevertheless Amontons’ first rule described average friction forces well. Amontons’ third rule and Euler’s rule were found to be less applicable to our system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.