Abstract

Sliding-rolling disk scuffing tests were conducted over a wide range of sliding and sum velocities, using a straight mineral oil and three aviation gas turbine synthetic oils in combination with two carburized steels and a nitrided steel. Geometrically-similar disks of two different sizes were tested in two different disk testers of nearly similar designs. In addition to disk size and metallurgy, the surface treatment, surface texture, and surface roughness of the disks were also varied. The investigation further covered variations in the oil supply configuration and flow rate. It is shown that the disk friction coefficient is dependent not only on the oil-metal combination, but also on the disk surface treatment and topography as well as the operating conditions. The quasi-steady disk surface temperature and the mean conjunction-inlet oil temperature are shown to be strongly influenced by the frictional power loss at the contact, but not by the specific makeup of the frictional power loss. They are also influenced by the heat transfer from the disks, mainly by convection to the oil and conduction through the shafts, which are dependent on system design and oil flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.