Abstract

Engineers encounter the problem of friction in any mechanical system. Friction force is strongly nonlinear and varies considerably while the system is working. In the case of high-precision applications friction makes the situation even more complex, as the stick-slip effect occurs near the target position. This paper introduces a pneumatic servo-system for investigation of the behavior of friction near the target position. A new model is proposed which takes the hysteresis loop of the friction also into consideration emphasizing the importance of hysteresis. This paper presents the tensorproduct (TP) based modeling of friction which is suitable for control design. The main advantage of the TP model transformation is that due to its polytopic model form Linear Matrix Inequality (LMI) can be immediately applied to the resulting model to yield controllers with guaranteed performance. The main contribution of this paper is the application of TP model transformation making the identification of friction parameters unnecessary by utilizing directly the measured data itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.