Abstract
Friction welding is a solid state joining process and it is best suited for joining dissimilar metals. It overcomes the problems associated with the conventional fusion welding processes. The joining of dissimilar metals using fusion welding processes produce brittle intermetallic precipitates at the interface which reduce the mechanical strength. Various aerospace, nuclear, chemical and cryogenic applications demand joints between titanium and stainless steel. Direct joining of these metals results in brittle intermetallics like FeTi and FexTiy, at the weld interface, which is to be avoided in order to achieve improved properties of the joints. Present study involves joining of two industrially important dissimilar metals such as commercially pure titanium and 304 stainless steel by friction welding with electroplated nickel coating as interlayer that can prevent the brittle intermetallic formation. Microstructural details of the interfaces of the friction welded joints were studied by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) technique and X-ray diffraction (XRD). Microhardness survey was carried out across the joints and tensile test was conducted to assess the mechanical properties of the joints. Fractography studies were carried out on the fracture surfaces of the joints to know the region of failure as well as the mode of failure. XRD patterns indicate the presence of intermetallics in the friction welded joints. These two metals were successfully joined by having electroplated nickel as interlayer. The weld interface on titanium side contained Ti-Ni intermetallics layers, in which the hardness of the weld metal showing the higher value than the base metals. Fractography study conducted on the fracture surfaces created due to pull test reveals that the failure is by brittle fracture and occurred at the intermetallics layer. The maximum strength of the joints achieved for 30 μm and 50 μm thick electroplated nickel interlayers are 242 MPa and 308 MPa, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.