Abstract

Dissimilar AA6061 and AA7075 alloy have been friction stir welded with a variety of different process parameters. In particular, the effects of materials position and welding speed on the material flow, microstructure, microhardness distribution and tensile property of the joints were investigated. It was revealed that the material mixing is much more effective when AA6061 alloy was located on the advancing side and multiple vortexes centers formed vertically in the nugget. Three distinct zones with different extents of materials intercalations were identified and the formation mechanism of the three zones was then discussed. Grain refinement was observed in all three layers across the nugget zone with smaller grains in AA7075 Al layers. All the obtained joints fractured in the heat-affected zone on the AA6061 Al side during tensile testing, which corresponds very well to the minimum values in microhardness profiles. It was found that the tensile strength of the dissimilar joints increases with decreasing heat input. The highest joint strength was obtained when welding was conducted with highest welding speed and AA6061 Al plates were fixed on the advancing side. To facilitate the interpretation, the temperature history profiles in the HAZ and at zones close to TMAZ were also measured using thermocouple and simulated using a three-dimensional computational model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call