Abstract

The joining of dissimilar Al 6013-T4 alloy and X5CrNi18-10 stainless steel was carried out using friction stir welding (FSR) technique. The microstructure, hardness and fatigue properties of fiction stir welded 6013 aluminium alloy to stainless steel have been investigated. Optical microscopy was used to characterise the microstructures of the weld nugget, the heat affected zone (HAZ), thermo-mechanical affected zone (TMAZ) and the base materials. The results show that FSR can be used the joining of dissimilar Al 6013 alloy and X5CrNi18-10 stainless steel. Seven different zones of the microstructure in the welding are reported as follows: (1) parent stainless steel, (2) HAZ in the stainless steel at advancing side of weld, (3) TMAZ in the stainless steel at advancing side of weld, (4) weld nugget, (5) TMAZ in the Al alloy at retreating side of weld, (6) HAZ in the Al alloy at retreating side of weld and (7) parent Al alloy. A good correlation between the hardness distribution and the welding zones are observed. Fatigue properties of Al 6013-T4/X5CrNi18-10 stainless steel joints were found to be approximately 30% lower than that of the Al 6013-T6 alloy base metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.