Abstract

Friction stir welding of dissimilar materials is investigated experimentally in this work and optimization is performed by applying a hybrid Taguchi-Grey relational analysis-Principal component analysis to maximize the tensile strength and hardness of the weld bead. Two dissimilar metals AA6061 and AZ61 is friction stir welded and considered for the experimentation. Experimental matrix is designed using Taguchi's Design of Experiment (DOE). Optimum inputs rotational speed, axial load and transverse speed is obtained by applying the hybrid optimization technique. Statistical analysis of Multi Response Performance Index (MRPI) through Analysis of Variance (ANOVA) shows that axial load is the significant parameter that contributes by 75.67% towards MRPI, followed by transverse speed and rotational speed. Confirmation experiment with optimum condition produces a better friction stir welding joint with higher tensile strength and hardness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call