Abstract

This paper will focus on the relatively new joining technology—friction stir welding (FSW). Like all friction welding variants, the FSW process is carried out in the solid-phase. Generically solid-phase welding is one of the oldest forms of metallurgical joining processes known to man. Friction stir welding is a continuous hot shear autogenous process involving a non-consumable rotating probe of harder material than the substrate itself. In addition, FSW produces solid-phase, low distortion, good appearance welds at relatively low cost. Essentially, a portion of a specially shaped rotating tool is plunged between the abutting faces of the joint. Once entered into the weld, relative motion between the rotating tool and the substrate generates frictional heat that creates a plasticised region around the immersed portion of the tool. The contacting surface of the shouldered region of the tool and the workpiece top contacting surface also generates frictional heat. The shouldered region provides additional friction treatment to the weld region as well as preventing plasticised material being expelled. The tool is then translated with respect to the workpiece along the joint line, with the plasticised material coalescing behind the tool to form a solid-phase joint as the tool moves forward. Although the workpiece does heat up during FSW, the temperature does not reach the melting point. Friction stir welding can be used to join most aluminium alloys, and surface oxide presents no difficulty to the process. Trials undertaken up to the present time show that a number of light weight materials suitable for the automotive, rail, marine, and aerospace transportation industries can be fabricated by FSW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.