Abstract

This paper presents the results of studying friction stir butt welding of commercial pure copper plates using both experimental and finite element analysis methods. The experimental work consisted of making a butt joint to 4 mm copper plates using friction stir welding process at constant rotational speed of the pin tool to evaluate the effect of welding speed on weld quality. Weld quality was evaluated by the joints tensile strength, micro hardness, as well as evolution of the developed microstructure across the welding zone. A coupled Eulerian Lagrangian (CEL) finite element (FE) model had been developed to simulate the friction stir butt welding process, and predict the temperature distributions across the weld, as well as developed welding stresses. Axial load and temperature measurements results from the experiments have been used to validate the finite element model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.