Abstract

During a cosmological first-order phase transition, particles of the plasma crossing the bubble walls can radiate a gauge boson. The resulting pressure cannot be computed perturbatively for large coupling constant and/or large supercooling. We resum the real and virtual emissions at all leading-log orders, both analytically and numerically using a Monte-Carlo simulation. We find that radiated bosons are dominantly soft and that the resulting retarding pressure on relativistic bubble walls is linear both in the Lorentz boost and in the order parameter, up to a log. We further quantitatively discuss IR cut-offs, wall thickness effects, the impact of various approximations entering the calculation, and comment on the fate of radiated bosons that are reflected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.